

High Resolution Computational Unsteady Aerodynamic Techniques Applied to Maneuvering Unmanned Combat Aircraft

Presenter
Maj Scott Morton
USAF Academy

Collaborators

Maj Jim Forsythe, Prof Russ Cummings USAF Academy Prof Kyle Squires Arizona State University Ken Wurtzler, Bill Strang, Bob Tomaro Cobalt Solutions, LLC Philippe Spalart Boeing Commercial Airplanes

maintaining the data needed, and of including suggestions for reducing	llection of information is estimated to completing and reviewing the collect this burden, to Washington Headqu uld be aware that notwithstanding ar OMB control number.	ion of information. Send comments arters Services, Directorate for Info	regarding this burden estimate rmation Operations and Reports	or any other aspect of th , 1215 Jefferson Davis l	is collection of information, Highway, Suite 1204, Arlington		
1. REPORT DATE 26 JUL 2004		2. REPORT TYPE N/A		3. DATES COVE	RED		
4. TITLE AND SUBTITLE			5a. CONTRACT NUMBER				
High Resolution Computational Unsteady Aerodynamic Techniques Applied to Maneuvering Unmanned Combat Aircraft					5b. GRANT NUMBER		
					5c. PROGRAM ELEMENT NUMBER		
6. AUTHOR(S)					5d. PROJECT NUMBER		
					5e. TASK NUMBER		
					5f. WORK UNIT NUMBER		
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) USAF Academy; Arizona State University					8. PERFORMING ORGANIZATION REPORT NUMBER		
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)					10. SPONSOR/MONITOR'S ACRONYM(S)		
					11. SPONSOR/MONITOR'S REPORT NUMBER(S)		
12. DISTRIBUTION/AVAIL Approved for publ	LABILITY STATEMENT ic release, distributi	on unlimited					
	OTES 85, CSP 02-5078, Pr nal document contain	_	dynamic Issues of	Unmanned A	Air Vehicles		
14. ABSTRACT							
15. SUBJECT TERMS							
16. SECURITY CLASSIFIC	17. LIMITATION OF	18. NUMBER	19a. NAME OF				
a. REPORT unclassified	b. ABSTRACT unclassified	c. THIS PAGE unclassified	- ABSTRACT UU	OF PAGES 39	RESPONSIBLE PERSON		

Report Documentation Page

Form Approved OMB No. 0704-0188

Outline

- Overview and motivation
 - UCAV Simulation Issues
 - Simulation hierarchies
- Static Case Validation of DES
- Forced Motion Validation of DES
- Embedded LES Modifications to DES
- Future Areas of Research Necessary
- Conclusions

UCAV Simulation Issues

- Unmanned Combat Air Vehicles are capable of super-maneuverability
- Main Challenges
 - ➤ Maneuvers occur at high Reynolds numbers for which the underlying fluid motion is usually turbulent
 - Incorporates massively separated flows and complicated vortical flows
 - ➤ Complete simulation requires solid-body motion, 6-DOF, and aeroelasticity
- Wind tunnel tests problematic
 - Important Reynolds number effects
 - Motion mechanical systems intrusive
- Flight tests costly, time-consuming
- Computational modeling an important element for advancing fundamental understanding and engineering prediction

Unmanned Combat Air Vehicles (UCAV)

Simulation provided by Mr Ken Wurtzler, Cobalt Solutions LLC

Massive Separations/Vortical Flowfields

- Challenges and issues
 - flow fields are inherently unsteady, chaotic, and threedimensional
 - » accuracy is crucial at high angle of attack: lift, drag, and moments
 - » complex nature of massive separation/vortical flowfields
 - defeats conventional turbulence models
 - higher fidelity computational techniques required
 - flow fields are described by the Navier-Stokes equations
 - » analytical solution for aircraft not possible

Choice of the computational model

Direct Numerical Simulation (DNS)

- solution of the Navier-Stokes equations without use of an explicit turbulence limited to low Reynolds numbers
- powerful research tool
- ready for full aircraft in ~2080

Large Eddy Simulation (LES)

- direct resolution of the large, energy-containing scales of the turbulent flow, model only the small eddies
- high computational cost in boundary layers
- ready for full aircraft in ~2045

Reynolds-average Navier-Stokes (RANS)

- model the entire spectrum of turbulent motions
- Highly unreliable performance in separated flows
- ready for full aircraft today

increase in cos

Detached-Eddy, Simulation (DES)

- Turbulence modeling approach proposed by Spalart *et al.* (1997)
 - Combines Large Eddy Simulation, and Reynolds-Averaged approaches
 - Designed to provide accurate solutions for massively separated flows
 - Can resolve unsteady flow features
 - » Aero-acoustics, aero-elasticity
 - RANS model responsible for predicting BL growth and separation (NUMERICALLY FEASIBLE)
 - LES model responsible for prediction of unsteady flow in separated region (ACCURATE)

Flow Solver - Cobalt

- CHSSI Developed
- Hybrid-Unstructured, Compressible Solver

- Spatial Operator
 - Riemann Solver
 - Least Squares Gradients
 - TVD limiting
 - Second order accurate
- Temporal integration
 - Point-implicit
 - Newton sub-iteration
 - Second order accurate
- Parallel Performance
 - Domain decomposition using ParMETIS
 - MPI
 - Over 98% efficient on 1024 processors

Static Case Validation of Detached Eddy Simulation

Delta Wing Vortex Breakdown

- **❖** Scott Morton (PI), Jim Forsythe, Tony Mitchell
- **❖** AFOSR project: Aeroelasticity predictions (PM: Tom Beutner, John Schmisseur)
- ***** AIAA 02-0587

Normal Force Power Spectral Density Analysis

2D Square with Rounded Corners

- Data of Polhamus
- Re=800,000
- a=10°
- Computations made on structured and unstructured grids of various domain sizes and grid spacing

- ***** Kyle Squires (PI), Jim Forsythe, Philippe Spalart
- **AFOSR project: Spin prediction** (PM: Tom Beutner)
- * DNS/LES IV, ERCOFTAC Vol 8

Rectangular Ogive - 90°

rounded-square cross section corner radius is 1/4 of the diameter

6:1 rectangular ogive main section 3.5b endcap 0.5b

Planar Cuts of Eddy, Viscosity,

- Grid consists of 5.9M cells (half aircraft)
 - Prisms in the boundary layer (using blacksmith)
 - » Conversions to prisms saved 2M cells
 - Tetrahedrons elsewhere
 - Average first y⁺=0.7
 - One man-week to create
 - Re=13.6x10⁶
- ◆ 2 days to compute 10,000 iterations on 256 processors (tempest MHPCC)
- Time step and grid sensitivity examined
- ❖ Jim Forsythe (PI), Kyle Squires, Ken Wurtzler, Philippe Spalart
- **❖** AFOSR project: Spin prediction (PM: Tom Beutner)
- ***** AIAA 02-0591

Time Averaged Pressures

Integrated Forces

		C _L	C _D	C _M	%C _L	% C _D	%C _M
	Ехр	0.781	1.744	-0.466			
	Coarse	0.747	1.677	-0.431	-4.25%	3.86%	-7.62%
DES	Baseline	0.736	1.616	-0.495	-5.70%	-7.35%	6.10%
	Fine	0.759	1.648	-0.457	-2.81%	-5.52%	-2.00%
	Coarse	0.855	1.879	-0.504	9.49%	7.73%	8.17%
S-A	Baseline	0.852	1.867	-0.523	9.09%	7.05%	12.22%
	Fine	0.860	1.880	-0.507	10.22%	7.78%	8.72%

Forced Motion Validation of Detached Eddy Simulation

Isosyrface of vorticity, colored by, pressure Side and top, views

Azimuthal Pressure Distribution, Wb/22/=0-2

Azimuthal Pressure Distribution, Wb/22/=0.2

Preliminary Spin F-15E at 65% angle of attack - DES

- grid (full aircraft): 6.46 x 10⁶ cells (generated using VGRIDns)
 - prisms in the boundary layers, tetrahedra elsewhere » conversion to prisms using *blacksmith*
 - average first $y^+ = 0.8$
 - Between resolution of coarse and baseline grids
- timestep = 0.02 (dimensionless using chord length and freestream speed)
- $Re = 13.6 \times 10^6$, Mach number = 0.3
- rotary motion about centroid along freestream velocity vector

Bump added to nose to reproduce strong yawing moment seen in flight test

Vorticity isosurfaces, colored by pressure Side and top views

Embedded LES Modifications to Detached Eddy Simulation

Research — embedded LES for turbulent channel flow

- importance of including "LES content" in the boundary layer prior to separation
 - flows with shallow separation
 - need grid densities sufficient to sustain eddy content near the wall
- another view of DES: LES with a complex wall-layer

interface, y, between RANS and LES regions controlled by the grid

Mean Velocity

"super buffer" between RANS and LES velocity profiles under-prediction of the skin friction (Nikitin et al. 2000)

Flow Structure near RANS-LES interface

u velocity fluctuation, DES, 129x129x65, y⁺=250

 $Re_t = 8000$

Backscatter

* stochastically force the Navier-Stokes equations (Leith 1990, Mason and Thompson 1993, Carati *et al.* 1994...)

$$\frac{Du_i}{Dt} = -\frac{1}{\mathbf{r}} \frac{\partial p}{\partial x_i} + \mathbf{u} \frac{\partial^2 u_i}{\partial x_j \partial x_j} - \frac{\partial \mathbf{t}_{ij}}{\partial x_j} + f_i$$

 f_i = stochastic force distributed about RANS-LES interface

- purely random or scaling using the eddy viscosity, strain rate, and timestep
- envelope over which force distributed

$$e(y; \mathbf{l}) = \frac{(\mathbf{l}y)^2}{1 + (\mathbf{l}y)^4}$$

1 adjusted so that maximum in envelope at RANS-LES interface

Flow Structure near RANS-LES interface

Turbulent Stresses

Stress comparison for DES with and without backscatter, 65x75x3

Mean Velocity

Future Areas of Research Necessary

- Embedded LES to improve simulation of instabilities generated inside the boundary layer
 - Need to continue the research outlined above
 - Apply the method to more test cases
- Unsteady experiments of-
 - Static high alpha UCAV configurations
 - Pitch and roll maneuver tests with unsteady data gathered
 - Possibly adopt the Boeing 1301 or 1303 as a standard configuration for several groups to test
 - High accuracy methods applied such as PIV, LDV, etc.

Conclusions

- DES has been examined on a wide range of massively separated flows
 - Moderate to greatly increased accuracy over traditional methods
 - Capability to predict unsteady flows at flight Re
 - » Crucial for high alpha maneuvering
 - » Crucial for aero-elasticity, aero-acoustics
 - Enough confidence built to encourage engineering use
- Several areas of research needed to apply to super-maneuvering UCAVs with confidence